Mercury Vapor Release from Broken Compact Fluorescent Lamps and In Situ Capture by New Nanomaterial Sorbents
نویسندگان
چکیده
The projected increase in the use of compact fluorescent lamps (CFLs) motivates the development of methods to manage consumer exposure to mercury and its environmental release at the end of lamp life. This work characterizes the time-resolved release of mercury vapor from broken CFLs and from underlying substrates after removal of glass fragments to simulate cleanup. In new lamps, mercury vapor is released gradually in amounts that reach 1.3 mg or 30% of the total lamp inventory after four days. Similar time profiles but smaller amounts are released from spent lamps or from underlying substrates. Nanoscale formulations of S, Se, Cu, Ni, Zn, Ag, and WS2 are evaluated for capture of Hg vapor under these conditions and compared to conventional microscale formulations. Adsorption capacities range over 7 orders of magnitude, from 0.005 (Zn micropowder) to 188 000 microg/g (unstabilized nano-Se), depending on sorbent chemistry and particle size. Nanosynthesis offers clear advantages for most sorbent chemistries. Unstabilized nano-selenium in two forms (dry powder and impregnated cloth) was successfully used in a proof-of-principle test for the in situ, real-time suppression of Hg vapor escape following CFL fracture.
منابع مشابه
Preventing mercury vapor release from broken fluorescent lamps during shipping.
Fluorescent lamps are estimated to annually release 1 t of mercury into the air in the United States; transport of used lamps may play an important role in these emissions. In 1999, the U.S. Environmental Protection Agency added lamps to the universal waste rule to encourage recycling by allowing shipment to recycling facilities by common carrier. The rules required that lamp packaging must be ...
متن کاملGraphene production: new solutions to a new problem.
528 nature nanotechnology | VOL 3 | SEPTEMBER 2008 | www.nature.com/naturenanotechnology Interestingly, the nano-selenium material captured five times more mercury than the maximum predicted on the basis of its surface area, indicating significant penetration of mercury into the nanoselenium matrix. This did not occur in the other sorbent materials. Even so, the amount of mercury sequestered wa...
متن کاملمطالعه پرتوهای فرابنفش انتشار یافته از لامپهای فلورسنت فشرده متداول
Background and aims: Compact fluorescent lamps(CFLs) are low-pressure mercury vapor lamps, which are more useful than other light sources. Some studies reported the leakage of UV radiation from CFLs. The aim of this study was measuring of ultraviolet radiation from universal compact fluorescent lamps in Iran. Methods: In this study, measuring of UV radiation of 54 bulb compact fluorescent lamps...
متن کاملDetermination of mercury distribution inside spent compact fluorescent lamps by atomic absorption spectrometry.
In this study, spent compact fluorescent lamps were characterized to determine the distribution of mercury. The procedure used in this research allowed mercury to be extracted in the vapor phase, from the phosphor powder, and the glass matrix. Mercury concentration in the three phases was determined by the method known as cold vapor atomic absorption spectrometry. Median values obtained in the ...
متن کاملMercury: Cleanup for Broken CFLs
Compact fluorescent lamps (CFLs) are about 75% more energy efficient than incandescent light bulbs and last 10 times longer, and thus have quickly become a modern-day environmental icon. The U.S. Environmental Protection Agency (EPA) estimates that about 290 million CFLs were sold in 2007. But CFLs do have one dim spot on their otherwise bright green image: the mercury that makes the bulbs’ inn...
متن کامل